

Recent Electroweak Results from DØ

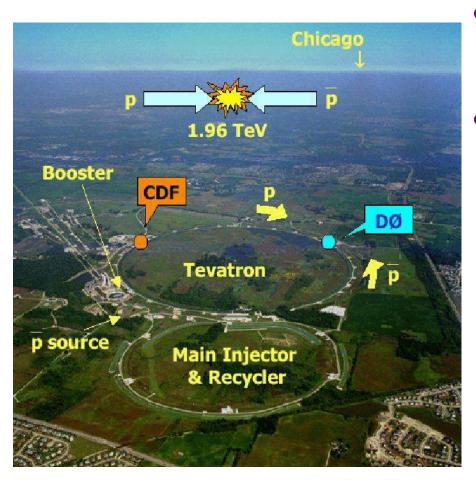
Terrence Toole

University of Maryland

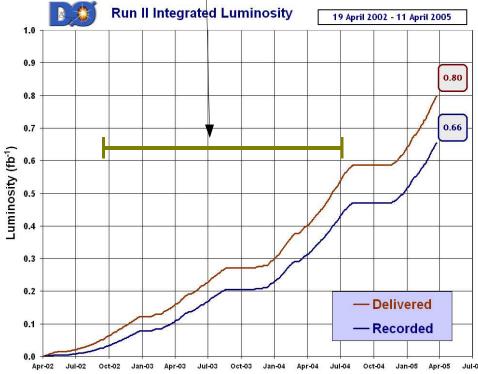
on behalf of the DØ Collaboration

APS Meeting April 17, 2005

Outline

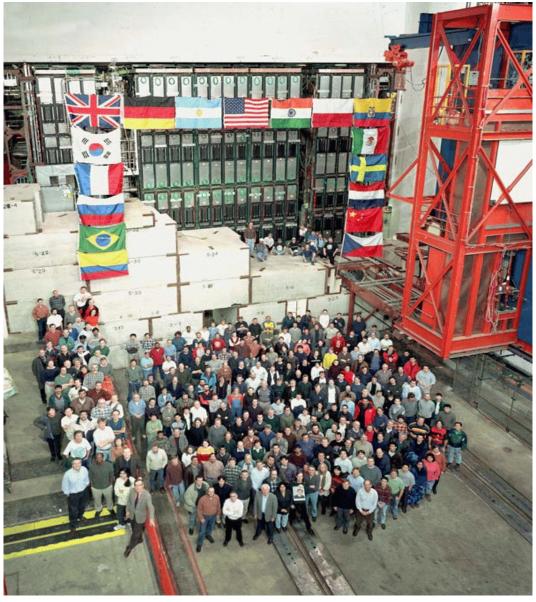

- The Tevatron at Fermilab and the DØ experiment
- $\sigma \times Br(Z \rightarrow \ell \ell)$ $\ell = e, \mu, \tau$
- Z/γ^* —ee Differential Cross Sections
- $\sigma \times Br(W \rightarrow \ell v)$ $\ell = e, \mu$
- W width
- Diboson Analyses

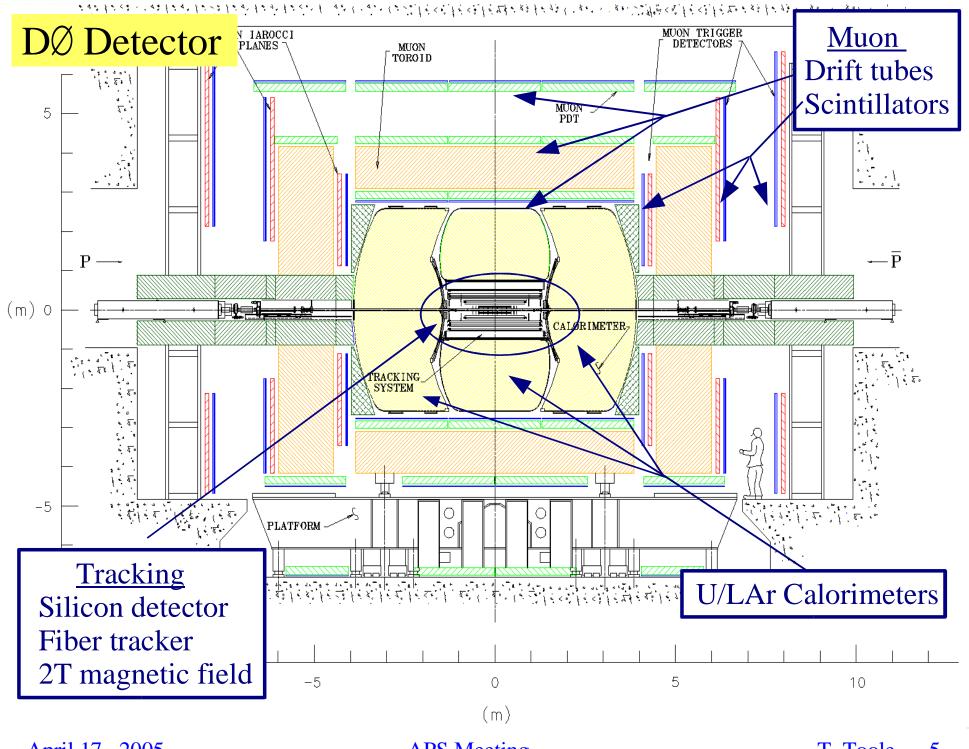
More details on results available at DØ Latest Results Webpage http://www-d0.fnal.gov/Run2Physics/WWW/results.htm



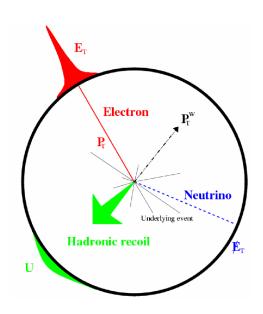
Run II at the Tevatron

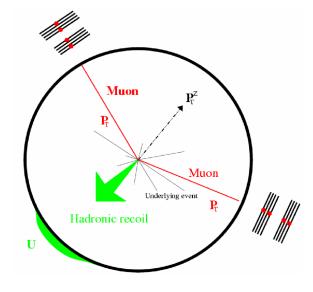
- $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$
- Recorded $\int \mathcal{L} \sim 0.7 \text{ fb}^{-1}$ to date
 - Results shown in this talk are on $\int \mathcal{L} \sim 0.2 0.3 \text{ fb}^{-1}$
 - Run II expects $\int \mathcal{L} \sim 4-8 \text{ fb}^{-1} \text{ delivered}$




The DØ Collaboration

- → 19 countries
- → 80 institutions
- → 670 physicists




W,Z to e or \(\mu \) Inclusive Cross Sections

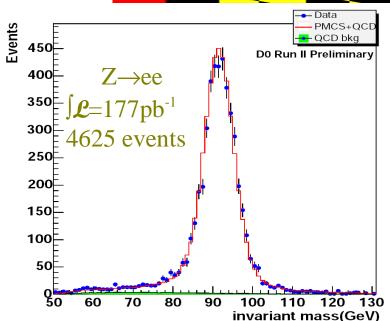
Motivation:

- Clean, abundant, and well known signals
- Test of the SM
- Benchmark measurements for the detector
- Can be used to cross check luminosity measurements

Limitations: uncertainties on

- Luminosity ~ 6.5%
- Parton Distribution Functions (PDFs) ~1.5%
- Others (lepton ID, Z statistics, ...)

Analysis Method


$$\sigma \times Br = \frac{N^{candidates} - N^{background}}{\epsilon \times Acc \times \mathcal{L}}$$

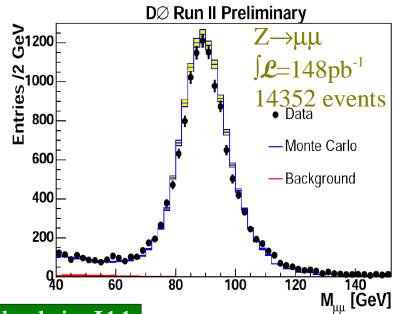
- Look for high p_T e or μ , often with a track match
- Backgrounds:
 - Larger background, such as Multijet or W+jet, estimated from data
 - Smaller background, such as tt or diboson, estimated from MC
- Measure efficiencies from data
- Determine Acceptance from Monte Carlo and detector simulation

Z to e^+e^- or $\mu^+\mu^-$

• Require 2 high p_T isolated leptons

Main backgrounds:

- Multijet events ~2% (Z→ee)
- bb, Z→ττ ~0.5% each (Z→μμ)


Main Syst. Uncertainties:

- EM ID ~2.9%

 $(Z\rightarrow ee)$

- PDFs ~1.8%

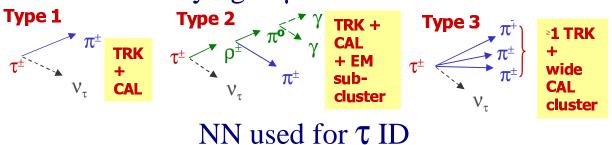
- $(Z\rightarrow ee, Z\rightarrow \mu\mu)$
- Detector modelling ~1% $(Z\rightarrow \mu\mu)$

See talk by Gavin Hesketh in J11

DØ Prelim: $\sigma \times Br(Z \rightarrow ee) = 264.9 \pm 3.9_{stat} \pm 9.9_{syst} \pm 17.2_{lumi} pb$

DØ Prelim: $\sigma \times Br(Z \rightarrow \mu\mu) = 291.3 \pm 3.0_{stat} \pm 6.9_{syst} \pm 18.9_{lumi} \text{ pb}$

$Z \rightarrow \tau^+ \tau^-$

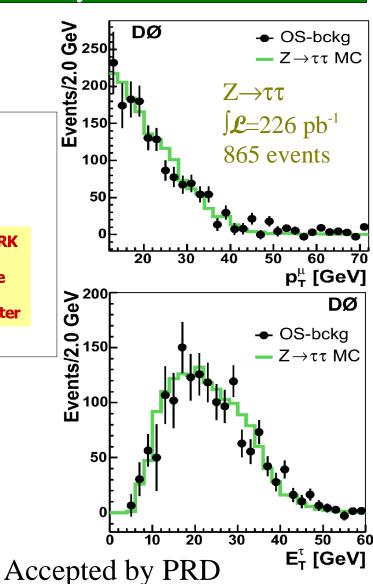

• First time measured with pp

See talk by Yuri Gershtein in J11

- Establishes τ ID
 - Important for other analyses

Selection:

Isolated τ decaying to μ back to back with:


Main backgrounds:

- QCD ~49%, W/Z \rightarrow μ +jet ~6%

Main Systematic Uncertainties:

- Trigger 3.5%, QCD BG 3.5%

$$\sigma \times \text{Br}(Z \rightarrow \tau \tau)$$
: 237 ± 15 stat ± 18 sys ±15 pb
April 17, 2005 APS Meeting

hep-ex/0412020

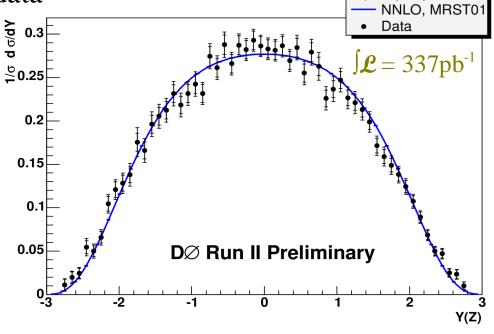
$\frac{d \sigma}{d Y} (Z/\gamma^* \rightarrow e^+ e^-)$

Rapidity distribution

• Initial $q\bar{q}$ with $\Delta x \neq 0$ boosts boson

 $x_{1,2} = \frac{M_Z}{\sqrt{S}} e^{\pm Y}$

 Z/γ^* Rapidity


- Large |Y| probes quarks with low x (~ 0.001) and high $Q^2 (\sim M_Z^2)$
- Different systematics than jet data
- Makes use of wide $|\eta_D|$ coverage of DØ calorimeter

Main Syst. uncertainties:

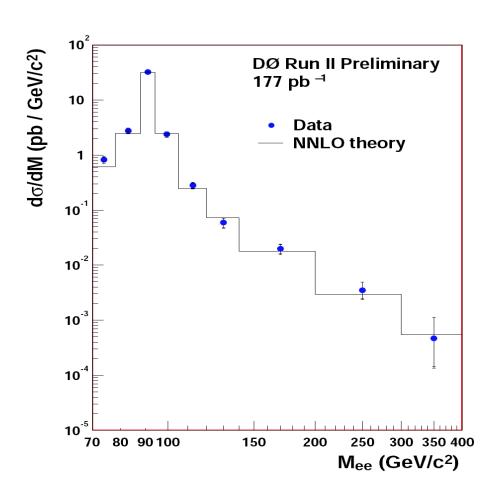
$$|Y| \sim 0$$
 $|Y| > 2$

- PDFs ~1.5% 10%
- Efficiencies: ~1.2% 20%

See talk by Ming Yan in J11

*NNLO Curve from Anastasiou, et. al., 2004

$\frac{d \sigma}{d M} \left(\mathbb{Z} / \gamma^* \rightarrow e^+ e^- \right)$



- Distribution sensitive to new physics
- Corrected for effects due to
 - Finite detector resolutions
 - Acceptance
 - QED radiative corrections

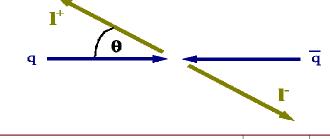
Main BG: Multijet events which fake EM ID ~ 1%

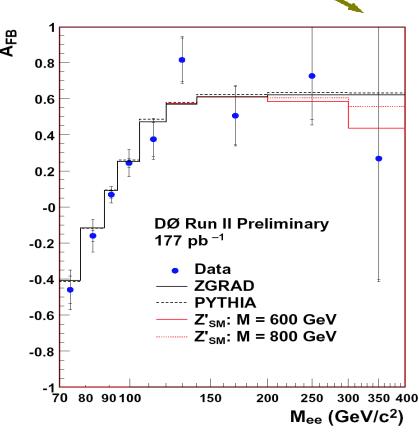
Main systematic uncertainties:

- background estimate
- PDFs
- detector modeling
- Boson p_T in MC

*NNLO curve from Hamberg, van Neerven, and Matsuura 1991.

$Z/\gamma^* \rightarrow e^+e^-$ Forward-Backward Asymmetry

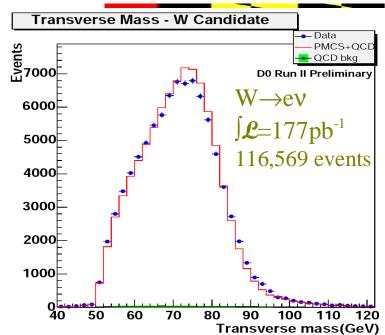

An extension of $\frac{d \sigma}{d M}$ analysis


The vector and axial-vector nature of fermion-Z couplings leads to asymmetry in lepton production angle

$$A_{FB} = \frac{\int_{0}^{1} \frac{d\sigma}{d(\cos\theta)} d(\cos\theta) - \int_{-1}^{0} \frac{d\sigma}{d(\cos\theta)} d(\cos\theta)}{\int_{0}^{1} \frac{d\sigma}{d(\cos\theta)} d(\cos\theta) + \int_{-1}^{0} \frac{d\sigma}{d(\cos\theta)} d(\cos\theta)}$$

- A_{FB} vs. mass has different sensitivity to u, d quarks
- Mix of vector and axial-vector couplings change with mass

$$\frac{d\sigma}{d(\cos\theta)} = \alpha(\beta(1+\cos^2\theta) + A_{FB}\cos\theta)$$



W to ev or $\mu\nu$

- Single high p_T isolated lepton(>15-25 GeV)
- Large \cancel{E}_{T} (> 15-25 GeV)

Main backgrounds:

- Multijet events ~30% (W→ev)
- $-b\bar{b}, Z\rightarrow \tau\tau$ ~3-4% (W $\rightarrow \mu\nu$)

Main Syst. Uncertainties:

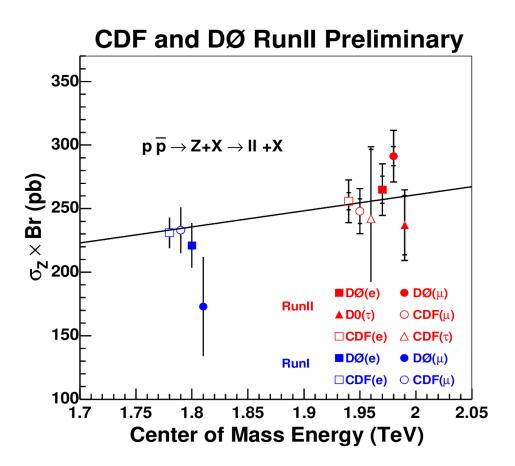
PDFs

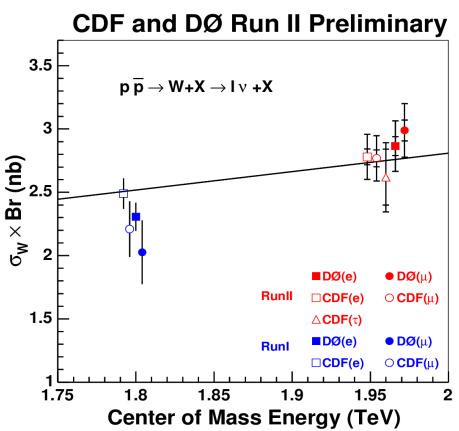
~1.4%

• $\varepsilon \times$ Acceptance (excl. pdf) ~1.5% -2%

DØ Run II Preliminary Z mumu 3500 W taunu Z tautau 3000 QCD bkg 2500 Bkg + Signal Data 2000 $W \rightarrow \mu \nu$ 1500 $\int \mathcal{L} = 96 \text{ pb}^{-1}$ 1000 57,426 events **500** = 100 120 140 160 180 200 60 80 M_{τ} (GeV)

See talk by Gavin Hesketh in J11


 $\sigma \times Br(W \rightarrow ev)$: 2865 ± 8.3_{stat} ± 76_{syst} ±186_{lumi} pb


 $\sigma \times Br(W \rightarrow \mu \nu)$: 2989 ± 15_{stat} ± 81_{syst} ±194_{lumi} pb

W, Z Cross Section Summary

*NNLO curve from Hamberg, van Neerven, and Matsuura 1991.

Direct Measurement of W Width

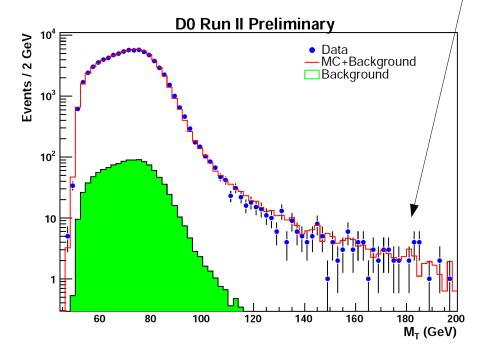
 $W\rightarrow ev$; 177pb⁻¹ (same as W cross section)

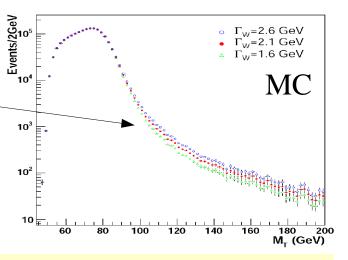
Method

• Generate MC templates with different W widths

• Compare to tail of M_T distribution (100 < M_T < 200 GeV)

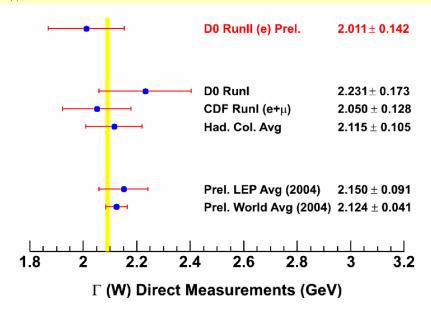
Main Systematic Uncertainties:


• Hadronic response & resolution ~64 MeV


Underlying event

~47 MeV

• EM resolution


~30 MeV

DØ Preliminary:

 $\Gamma_{\rm w} = 2.011 \pm 0.93 \text{ (stat)} \pm 0.107 \text{ (sys)}$

Diboson Analyses: Wγ WW WZ Zγ

- Measure Cross sections, test Anomalous Couplings
- Any excess above SM expectations could indicate new physics
- Background for other analyses
 - top pairs
 - Higgs, NP searches

- Look for W,Z decays to final state e or μ
 - Smaller branching ratio than jets in final state, but much less background
- Similar measurements done in Run I and at LEP

Test for AC via L_{eff}:

$$L_{WWV} / g_{WWV} = g_{V}^{1} (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu})$$

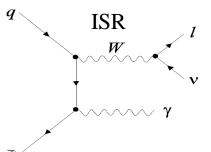
$$+ \kappa_{V} W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\lambda}$$

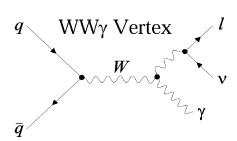
Where
$$V = Z$$
, γ

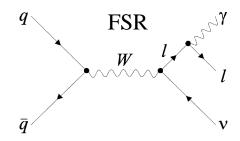
In SM:
$$g_v^1 = \kappa_v = 1$$

 $\lambda_v = 0$

Determine from data:

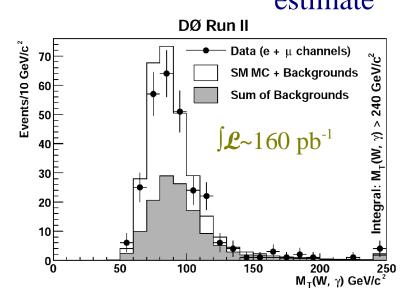

$$\Delta g_{v}^{1} = g_{v}^{1} - 1; \quad \lambda_{v}; \quad \Delta \kappa_{v} = \kappa_{v}^{-1}$$




Wγ

Three diagrams contribute at LO

- Look for W decays to e or μ
 - $-p_{T}, E_{T} > \sim 25 \text{ GeV}$
- Require Central γ with $E_{T}(\gamma) > 8 \text{ GeV}$
- $\Delta R(1\gamma) > 0.7$ (suppress FSR)


$$(p\bar{p} \to l\nu\gamma + X) = 14.8 \pm 2.1 \text{ pb}$$

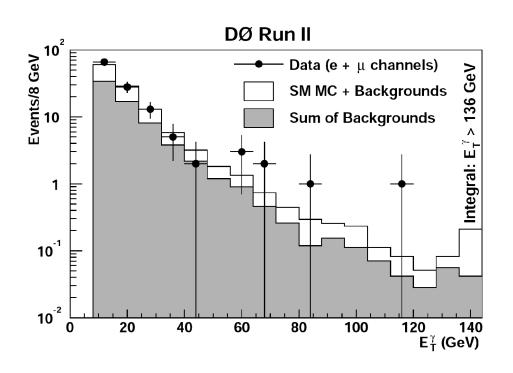
SM* $16.0 \pm 0.4 \text{ pb}$

Submitted to PRD Rapid Comm. hep-ex/0503048

Main Background:

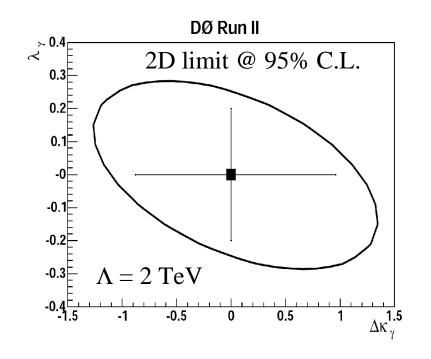
W+j, jet misID'd as γ ~50%

Main Syst. Uncertainty: background estimate



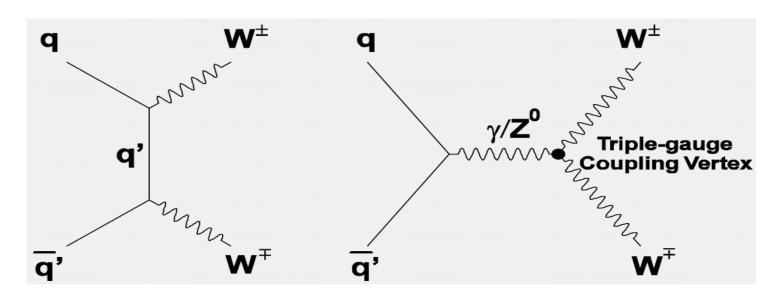
^{*}Baur & Berger, PRD 41, 1476 (1990)

Wy Anomalous Couplings


1D limits @ 95%C.L. Λ = 2 TeV

$$-0.88 < \Delta \kappa_{\gamma} < 0.96$$

$$-0.20 < \lambda_{\gamma} < 0.20$$


Submitted to PRD Rapid Comm. hep-ex/0503048

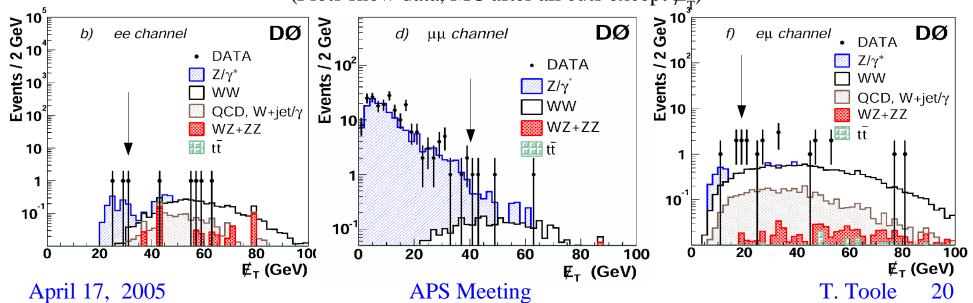
- Binned likelihood fit on $E_{T}(\gamma)$ spectrum gets 1D, 2D limits on $\Delta \kappa_{\gamma}$ and λ_{γ}
- Require $M_T(W,\gamma)>90$ GeV to enhance WW γ contribution

$\overline{\mathbf{W}}$

- Sensitive to WWZ /WWγ
- Background for Higgs, NP searches
- Dilepton analysis: ee, μμ, eμ
 - Clean, but low branching fraction

Main Backgrounds:

- W+j/ γ , dijet
- Drell-Yan
- top pairs
- WZ, ZZ



WW Event Selection

	ee	μμ	eμ	description
$p_{_{\mathrm{T}}}$	$ \leftarrow p_{T}(1)>20$	GeV, $p_{T}(2) > 1$	$5 \text{ GeV} \rightarrow $	preselection
E _T (in GeV)	> 30	> 40	> 20	
η	$\eta_{\rm e}$ < 3	$\eta_{\rm u}$ < 2	$\eta_e < 3; \eta_u < 2$	preselection
$E_{\rm T}^{\rm SC}$ (in $\sqrt{\rm GeV}$)	< 15		< 15	rejects W+j, DY
Δφ		< 2.4		rejects DY
H _T (in GeV)	< 50	< 100	< 50	rejects top pairs
M _T ^{min} (in GeV)	> 60		>20	rejects DY, dijet
Mass (in GeV)	M< 76; M>106	20 <m<80< td=""><td>M_{\parallel}<61; M_{\parallel}>121</td><td>rejects DY, WZ, ZZ</td></m<80<>	M_{\parallel} <61; M_{\parallel} >121	rejects DY, WZ, ZZ
			(for $N_1 \ge 3$)	
			<u>*</u>	

Good Agreement between data and signal+background MC (Plots show data, MC after all cuts except ₺¬)

WW Results

Main Syst. Uncertainties:

- µ, e resolutions
- lepton efficiencies

Main background (after cuts)

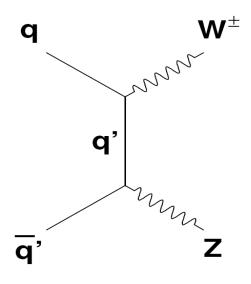
• ee, eµ: dijet

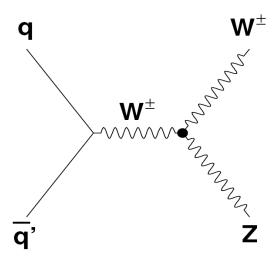
• $\mu\mu$: $Z/\gamma*\rightarrow \mu\mu$

	ee	μμ	eμ
$\int \mathcal{L} (pb^{-1})$	252	224	235
Efficiency(%)	8.71 ± 0.13	6.22 ± 0.15	15.4 ± 0.2
Expected Background	2.30 ± 0.21	1.95 ± 0.41	3.81 ± 0.17
Expected WW	3.42 ± 0.05	2.10 ± 0.05	11.1 ± 0.1
# Candidates	6	4	15

$$\sigma(p\bar{p}\rightarrow W^+W^-) = 13.8^{+4.3}_{-3.8}(stat)^{+1.2}_{-0.9}(sys)\pm0.9(lum) \ pb$$

 $SM^* 12.0-13.5 \ pb$


hep-ex/0410066 Accepted by PRL


^{*}Ohnemus (1991), (1994), and Cambell & Ellis (1999).

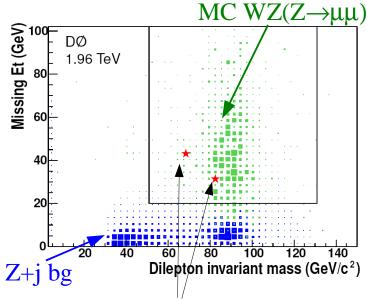
- Only sensitive to WWZ coupling
 (WW is sensitive to WWZ and WWγ)
- WZ unavailable at e⁺e⁻ colliders
- Important background for searches
- Search for WZ to 3 leptons $+ \cancel{E}_{T}$
 - eee, eeμ, eμμ, μμμ
 - ~Only SM process with trilepton signature
 - Distinct, but rare
 - $\sigma(p\bar{p}\rightarrow WZ)\sim 4.0$ pb at Run II Energy
 - Branching fraction ~1.5%

WZ Event Selection

Z Selection:

• 2 isolated ee/ $\mu\mu$ with p_T>15 GeV that reconstruct a Z mass

W Selection:


- Isolated e or μ with $p_T > 15 \text{ GeV}$
- $\not E_T > 20 \text{ GeV}$

Main backgrounds:

• Z+X ($X=j, \gamma, \text{ or } Z$)

Interpreting the events as signal+background gives:

James Degenhardt in E7

Find 3 events:

2 μμμ and 1 eee

Est. total bg:

0.71

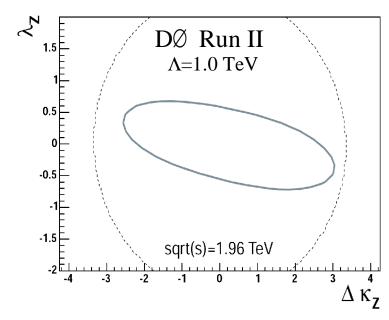
Cross section limit $\sigma(WZ+X) < 13.3 \text{ pb } (95\% \text{ C.L.})$

 $P(0.71 \text{ bkgd}) \rightarrow 3 \text{ signal events is } 3.5\%$

Cross section $\sigma(WZ) = 4.5^{+3.5}_{-2.6}$ pb SM* 3.7 ± 0.1 pb

*Cambell and Ellis (1999)

WWZ Anomalous Trilinear Couplings



- Best limits in WZ final states
- First 2D limits in $\Delta \kappa_z$ vs λ_z using WZ
- Best limits available on g_1^Z , $\Delta \kappa_Z$ and λ_Z from direct, modelindependent measurements
- DØ RunII 1D limits are ~factor of 2-3 better than our RunI limits

James Degenhardt in E7

hep-ex/0504019 Submitted to PRL

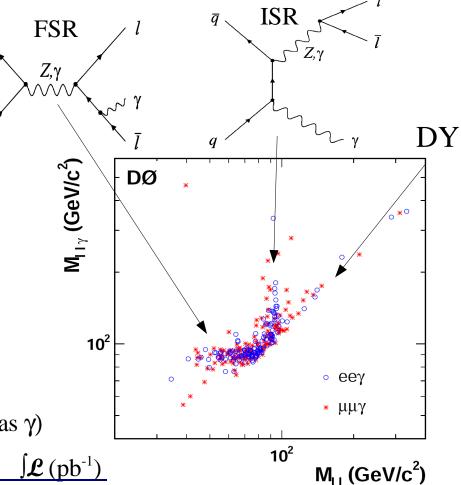
1D Limits at 95% C.L. $\Lambda = 1.0 \text{ TeV}$ $-0.53 < \lambda_z < 0.56$ $-0.57 < \Delta g_1^z < 0.76$ $-2.0 < \Delta \kappa_z < 2.4$

Inner contours: DØ 2D limits

Outer contours: unitary boundary

Ζγ

- ISR and FSR contributions, but no ZZγ or Zγγ in SM
- Look for Z decay to ee or μμ with M(ll)> 30 GeV
 - ee: 2 isolated electrons with p_T>15GeV, p_T>25 GeV
 - $\mu\mu$: 2 isolated μ with $p_T > 15$ GeV
- Photon: $E_{T}(\gamma) > 8 \text{ GeV}$ $\Delta R(l\gamma) > 0.7$
- Main background is Z+j (jet mis ID'd as γ)


channel	Observed	Expected (SM)	BG	$\int \mathcal{L}(pb^{-1})$
eeγ	138	95.3 ± 4.9	23.6 ± 2.3	320
μμγ	152	126.0 ± 7.8	22.4 ± 3.0	290

$$\sigma(p\bar{p} \rightarrow Z\gamma) = 4.2 \pm 0.4_{\text{stat+sys}} \pm 0.3_{\text{lum}} \text{ pb}$$

SM: 3.9 ± 0.2 pb (Baur, Han, & Ohnemus 1998)

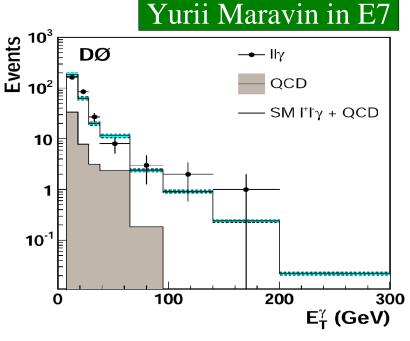
April 17, 2005

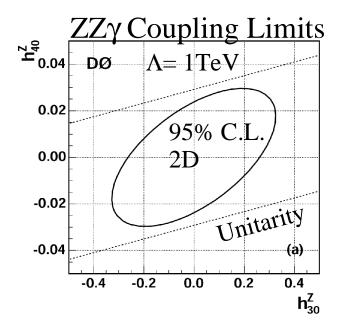
APS Meeting

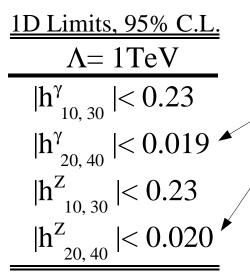
Yurii Maravin in E7

hep-ex/0502036 Submitted to PRL

T. Toole

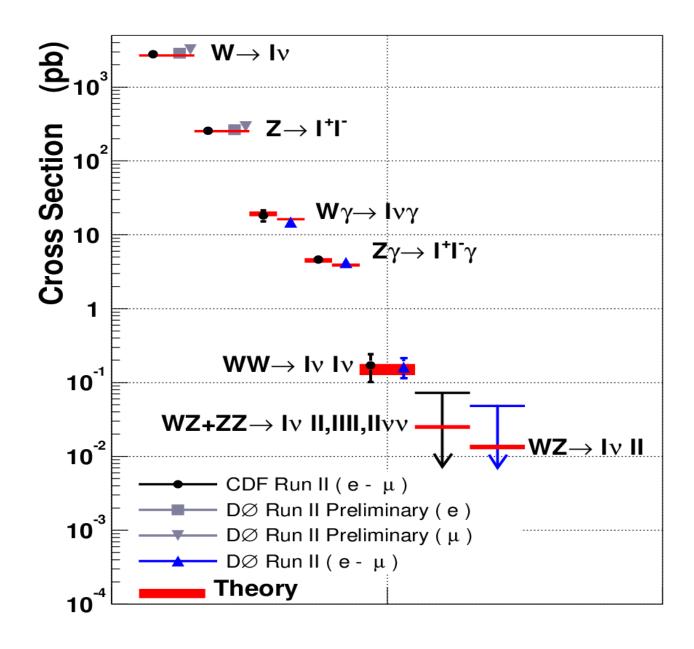

Zγ Anomalous Couplings




- Perform binned likelihood fit to $E_T(\gamma)$ spectrum (similar method as used for $W\gamma$)
- L_{eff} has 8 coupling parameters

$$-h_{10}^{V}, h_{20}^{V}, h_{30}^{V}, h_{40}^{V}$$
 (V=Z, γ)

- All = 0 in SM


Most stringent limits to date

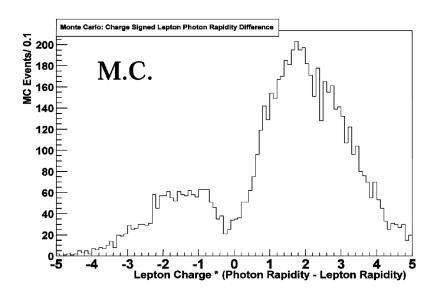
hep-ex/0502036 Submitted to PRL

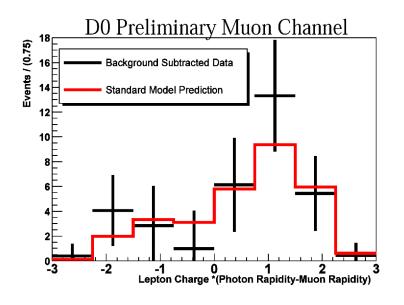
DiBoson Summary

Summary

- Presented a collection of Electroweak Physics results from DØ in Run II
 - W/Z to leptons cross sections
 - First measurement of $\sigma(pp \rightarrow Z \rightarrow \tau\tau)$
 - Differential cross sections
 - Diboson cross sections and Anomalous Coupling limits
- Measurements in agreement with Standard Model
- Run II at the Tevatron is progressing well
 - Present results are based on a fraction of Run II expected \mathcal{L}

Just Beginning to Tap into the Potential of Run II


Backup Slides



Wγ Radiation Amplitude Zero

- For $COS(\theta^*)$, the angle between incoming quark and photon in the Wy rest frame, = -1/3, SM has "amplitude zero".
- For events w/ M_T(cluster)>90 GeV/c². One could guess the W_{γ} rest frame. We use chargesigned $\Delta \eta (I, \gamma)$

- We plot the backgroundsubtracted muon data vs. MC $\Delta \eta(I,\gamma) =>$ hints of the Rad. Zero.
- It will help to extend the etacoverage of electrons and especially of photons.